
E L E C T R O H Y D R O D Y N A M I C  F L O W  IN A T W O - D I M E N S I O N A L  

C H A N N E L  W I T H  AN A X I A L L Y  D I S P O S E D  E L E C T R O D E - E M I T T E R  

V.  I.  G r a b o v s k i i  

A study is  made of the flow of an incompress ib le  nonviscous unipolar charged liquid in a two- 
dimensional channel I x I <~, I Y I -< h with conducting walls  and an axially disposed e l ec t rode-  
emi t t e r  (along y =0). The charged par t i c les  have an a rb i t r a ry  constant mobility. The charge 
distr ibution on the emi t t e r  is approximated as a unit step function. The problem is solved 
by l inear iz ing the equations with r e spec t  to the e lec t rohydrodynamic  interact ion.  The be -  
havior  of the e lec t r i ca l  p a r a m e t e r s  is  determined,  and the deformed prof i les  of veloci ty  and 
p r e s s u r e  downstream of the zone in which the e lec t ros ta t ic  fo rces  a re  rotat ional  in cha rac -  
t e r  a re  calculated. These  prof i les  can be determined without having to solve the l inear ized 
par t ia l  different ial  hydrodynamic equations in the ent i re  region occupied by the flow, although 
the prof i les  then depend on the distr ibution of the e lec t r ica l  p a r a m e t e r s  along the ent i re  
length of the channel. 

Elec t rohydrodynamic  nonviscous flows in channels are  usually investigated in the one-dimensional  
approximation (see [1, 2], for  example}. T h e r e  a re  many devices,  however, where  the e lec t r i c  charge is 
introduced into the flow in such a manner  that  in a cer ta in  region of the flow the e lec t r i ca l  fo rces  a re  non- 
potential ,  with the resu l t  that the flow acquires  a spatial  cha rac t e r  (two-dimensional,  in the s implest  case}. 
An example of th is  sor t  of flow is analyzed in [3], which deals with the motion of a liquid with ze ro  charged-  
par t ic le  mobility in a two-dimensional  channel with nonconducting walls. The per tu rbed  motion of the liq- 
uid was de termined for  var ious  laws descr ibing the supply of charged par t i c les  by the e l ec t rode -emi t t e r .  

In addition to sys tems  employing channels with nonconducting walls  (when the emi t t e r  and the neutra l -  
i ze r  a re  located in c ros s  sect ions of the channel) the re  is  also considerable in te res t  in var ious  other  e l ec -  
t rode  a r r angemen t s :  emi t t e r  grids and axial ly disposed needles ,  for  example,  to mention only two out of 
many. One of the possible schemes  takes  the form of a device with conducting walls  and an axially d is -  
posed e l ec t rode -emi t t e r .  This scheme can simulate some of the p r o c e s s e s  which take place in corona 
devices.  

In the p resen t  a r t ic le  we de te rmine  the e lec t r i c  fields and the asymptot ic  per tu rbed  motion of an in-  
compress ib le  medium in a two-dimensional  channel ] x t < ~o, y < i hi with conducting walls  and an axially 
disposed (along y =0) e l ec t rode -emi t t e r .  As in [3] the liquid is assumed to be nonviscous, an assumption 
which is possible  when the length of the working region of the channel is much g r ea t e r  than its t r a n s v e r s e  
dimensions.  The analysis  is pe r fo rmed  with the aid of per turbat ion theory  (the e lec t rohydrodynamic  in te r -  
action is assumed small}. The charged-par t i c le  mobili ty is a r b i t r a r y  but constant.  

1. We consider  the two-dimensional  motion of a nonviscous incompress ib le  liquid in a channel 
lxl < oo, l y l<  h. Suppose that at x = -  ~ the flow conditions a re  uniform and the flow veloci ty is U (Fig. 1). 
We assume that the walls  consti tute e lec t rodes  which a re  at a potential  below zero .  An e lec t rode emitting 
posi t ive charges is si tuated in the middle of the channel (along the 0x axis).  The e l ec t rode -emi t t e r  is 
sufficiently thin that it  in t roduces no hydrodynamic per turbat ions  into the flow. 
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Fig. 1 

As the processes in the upper and lower parts of the channel are 
symmetrical, we shall concern ourselves in future only with the upper 
region 0 <_ y _< h. The solution obtained can easily be modified to relate 
to the lower region. 

The electrode-emitter is at a constant potential ~, > 0, and under 
the action of the resulting electric field charge flows from the emitter 
into the passing liquid. A space-charge region is produced in the channel, 
the form of which depends on the flow velocity of the liquid and on the 
electric field (external and induced). In turn, the interaction of the liquid 

with the charged  pa r t i c l e s  in this  region causes  the hydrodynamic  p a r a m e t e r s  of the flow to va ry .  The 
resu l tan t  motion of the liquid is  desc r ibed  by the equations of  e l ec t rohydrodynamics  

Ou 8u Op au 8v 
~ + v X~ - o~ + SqE~:' aT + ~ = ~ 

Ov Ov Op ( i . i )  u ~ + v u y  = - - ~ +  SqE v 

o 
0-7 [q (uRe'4- E~)] + [q (VRe+ E~)] = 0 

Ae~=--Nq,  E = --  grad(p ( j = q V R ~ + q E )  (1.2) 
R Uh q.~. 4r~q.h~ V = ( u , v , O ) , n = ( E ~ , E v ,  O), e = ~ . . ,  S = - f ~ - ,  N =  ~qD. / 

Equations (i.1) and (1.2) are written in dimensionless form. The characteristic velocity, pressure, 
and dimension of the flow were taken to be U, pU 2, and h (p is the density of the liquid). The characteristic 
values for ~ (the potential of the electric field), E, q (electric-charge density), and j (electric-current den- 
sity) are, respectively, ~,, ~./h, q., and bq,~,/h (b is the mobility of the charged particles). 

In order of magnitude the dimensionless criterion S equals the ratio of the electrostatic force to the 
force of inertia. The parameter N characterizes the magnitude of the induced electric field. The electric 
Reynolds number R e determines, in order of magnitude, the ratio of convection current to conduction 
current. 

We shall now formulate the boundary conditions subject to which (I.i) and (1.2) are to be sohred. 
From the assumed uniformity of the flow at x=- oo and the fact that the liquid cannot pass through the 
electrodes, we have 

u ( - - ~ ,  ~ ) ~ 1 ,  v(x, t) = v ( x ,  0 ) = 0  

u d y = t ,  x ~ ( - - c r  ~)  
0 

The boundary conditions for the electrical quantities are obvious: 

~(x, 0)___t, ~(x, t ) - - 0  

In addition, we mus t  p r e s c r i b e  q (x, 0) = f (x ) ,  the charge-dens i ty  dis t r ibut ion on the emi t t e r .  
def in i teness  we t a k e f ( x )  in the f o r m  

(1.4) 

For 

{~ (x<O) 
] (x) = o (x) = (~ >! o) (1.5) 

The  motion of the liquid is  comple te ly  de te rmined  by equations (1.1) and (1.2) in conjunction with 
boundary  conditions (1.3), (1.4), (1.5) and p r e s c r i b e d  values  of the d imens ion less  c r i t e r i a  S, N, R e. 

If the e l ec t rohydrodynamic  in te rac t ion  S is  sufficiently smal l ,  the  solution to the p rob l em can be 
sought with the aid of pe r tu rba t ion  theory .  The e l ec t r i ca l  quanti t ies  a re  then found through the unper turbed  
dis t r ibut ions  of the hydrodynamic  p a r a m e t e r s  and sa t i s fy  the following s y s t e m  of equations:  

A(p = - - N q  (E = - -  grad (p) (1.6) 
aq {u a~\ aqa~ 

q~(x, 0) ~-- i, (p(x, i) ~ 0 ,  q(x, 0) = 0 ( x )  (1.7) 

917 



_ C ' I / A ,  
0.3 ..~ 0..04. ~ I v.O.7 

-t.g -a8 -~4 0 o.4 o.8 /Z t.s z 

Fig. 2 

Equations (1.6), (1.7) a re  obtained f rom (1.2) by putting 
in the la t te r  u -- 1, v -~ 0, p=cons t .  

The  equations descr ib ing  the pe r tu rba t ions  of the hydro-  
dynamic  p a r a m e t e r s  (the pe r tu rba t ions  a re  indicated below by sub- 
sc r ip t  "1") a re  obtained by l inear iz ing  (1.1) about the solution 
u -= l ,  v~-0,  p =eonst:  

Oul Opl o~ Ov~ Op, Sq  o~p (1.8) 
o--~ = - -  ~ - -  Sq5~x ' Ox oy ~.u 

Ou-A~ ~ OvA = 0 (1.9) 
Ox ' Oy 

1 
" l l  1 (-- oo, ~l)"~--0, I )  1 (X~ O)~ ?}1 (X~ t ) ~ - 0  (!uldy~-O) (1.10) 

The quanti t ies  q and ~ appear ing  in (1.8) a r e  the solution of the sy s t em (1.6), (1.7). 

In future we shall  be invest igat ing the  s y s t e m s  of equations (1.6), (1.7) and (1.8), (1.9). 

2. We solve (1.6), (1.7) by the method of success ive  approximat ions .  The ze ro th  approximat ion  c o r -  
responds  to no e l ec t r i c  cha rges  in the channel and, correspondingly,  to ze ro  induced fields.  Consequently, 
we have for  the ze ro th  approximat ion  

q ~ 0 ,  ~ = t - - g  (2.1) 

Let  us now find the e l ec t r i c  space cha rge  in the f i r s t  approximat ion.  To this  end we inser t  in Eq. 
(1.7) the zero th  approximat ion  for  the potential .  The resul t ing  equation 

Oq Oq 
R e +  ~-y = 0 (2.2) 

was  solved by the method of c h a r a c t e r i s t i c s  [4]. It has one family  of c h a r a c t e r i s t i c s  which, s ta r t ing  f rom 
the points  of the line y =0, fill  up all  the space  between the wal ls .  Thus,  p r e s c r i b i n g  q on the line y =0 f ixes 
the charge  dis tr ibut ion eve rywhere .  

F o r  our chosen boundary condition, step function (1.5), the solution of (2.2) has the f o r m  

{0 i (x<ReY) (2.3) 
q = 0 (x --  Beg) = (x >t P~y) 

The  line y = x / R  e is  a boundary line for  charge.  The appearance  of th is  line is  connected with two 
fac tors :  the r emova l  of cha rges  by the liquid flow and the motion of the cha rges  in the ex te rna l  e lec t r i c  
field. The inclination of th is  line to the 0x axis depends on the quantity R e- 

In th is  manner ,  th ree  regions  cha r ac t e r i z ed  by different  charge  dis t r ibut ions can be dist inguished: 
region 1 ix -< 0), where  t h e r e  is  no charge;  region 2 (0 <-x_< Re), where  space  charge with a densi ty equal 
to unity occupies  only one half  the region; and region 3 (x > - Re), where  the charge densi ty is eve rywhere  
equal  to unity (Fig. 1). 

Let  us  now calculate  the potential  in the f i r s t  approximation.  To this  end we must  substi tute charge 
dis t r ibut ion (2.3) into Eq. (1.6) for  the potential .  We solve the resu l t ing  equation by introducing an auxi l iary  
potent ia l  function r = q - 1  +y, for  which we obtain the equation 

A~ = - - N 0 ( x - - P Q y ) ,  ~(x ,  0) = ~ ( x ,  l) ~ 0  (2.4) 

Equation (2.4) can be solved by the F o u r i e r  method, r ep resen t ing  the sought function r in each of the 
reg ions  1, 2, 3 as a s e r i e s  of the form 

~i (x, y ) =  ~ a~ (x) sin (kng) (~ = i, 2~ 3) (2.5) 
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On substituting (2.5) into (2.4), where the right side is also rep- 
resented as a Four ie r  ser ies ,  we obtain for the functions aik (x) o r -  
dinary differential equations whose boundary conditions follow from the 
requirements  that the potential be bounded at infinity and that the nor -  
mal and tangential components of the e lec t r ic  field be continuous at the 
boundaries between regions 1, 2, 3. 

The final solution for ~ has the form 

{~ < 0} 
o o  

�9 2 N e~ .~{ l_cos ( k~ )e_~o tg~  } ( P I = t - -  g +  ~ sin(kz~g) sm ~ 
k = l  

�9 N ( 2 . 6 )  
qh= ' l - - g d -  ~, sin (kng) s 'n~(-~)3 { ~ [ t - - c ~ 1 7 6 1 7 6  e~ ' (~ -~ tg~ ) - e -~}  

~=x {x ~ ctg a} 

o o  

(kg) 3 e~ (ctg a-x) cos (kg) --  e -k~x 2_ s i ~  
~=1 (ctg a = Re) 

With the aid of this solution we can analyze the behavior  of the e lec t r ica l  quantities within the entire 
channel in the p resence  of space charge.  

F igure  2 shows the var ia t ion of Ex, the axial component of the e lec t r ic  field, along the length of the 
chmmel for var ious  values of y =const.  Figure  3 shows the var ia t ion of Ey, the t r ansve r se  component of the 
e lec t r ic  field, along the length of the channel for var ious  values of y =const.  (We took N =0.5, R e =1.) It 
can be seen that the maxima or  kinks of the distributions all lie on the line y=x ,  i.e., all sig~lificant changes 
in the e lec t r ica l  quantities occur  near  the boundary of the space-charge  region. 

The charge distribution in the second approximation is fotmd f rom Eq. (1.7), in which the potential (p 
and its der ivat ives  are  determined through formulas  (2.6). The corresponding equation has the f o r m  

o~ og~ aqay  _ q(x, 0)=0(x) (2.7) 

The cha rac te r i s t i c s  of Eq. (2.7) are  lines given by 

dy OT / oy 
dx R e -  0 T / Ox (2.8) 

The charge distribution on these charac te r i s t i c s  is given by the expression 

q = e x p { - -  N i O(x--yR~)Ev dy} 
0 

(2.9) 

With the aid of (2.8) and (2.9) we can investigate how the space-charge  region is deformed in com-  
par ison with the f i rs t  approximation. 

Let us es t imate  the prec is ion  of a successive-approximat ions calculation which te rmina tes  at formulas  
(2.8) and (2.9) for the e lec t r ic  charge. This we do by comparing the approximately computed pa rame te r s  
at x=oo with the i r  p rec i se  values. (The la t ter  can be determined by integration of ordinary differential 
equations, since at x = ~  all e lec t r ica l  p a r a m e t e r s  depend on y atone.) The rate of convergence of the above 
method depends, of course,  on the magnitude of the p a r a m e t e r  N. Thus, the discrepancy between the approx- 
imate and the p rec i se  values of charge density at y = l  for N =0.5 proves  to be less than 10%. If, however, 
N =0.3, then the d iscrepancy does not exceed 5%. 

3. We now determine the per turbat ions  u 1, v 1, Pl of the hydrodynamic pa rame te r s .  
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There  is  no need to solve (1.8) and (1.9) within the ent i re  region occu-  
pied by the flow in o rde r  to be able to calculate  the per tu rba t ions  obtaining 
f a r  downs t ream f rom the edge of the s p a c e - c h a r g e  zone. As shown in [3] 
such a calculat ion involves only o rd inary  different ia l  equations.  Let us find 
the appropr ia te  different ia l  equations in the p r e sen t  case .  R e m e m b e r i n g  
that  at x =  ~ the p a r a m e t e r s  of the p rob l em a re  independent of x, it follows 
f r o m  Eqs. (1.8) and (1.9) that 

a s :  = O, d~+ = S q §  + (3.1) dy - ~ -  

(the index w+, denotes the value of the cor responding  quantity at x =  ~ ) .  

El iminat ing the p r e s s u r e  Pl f r o m  (1.8), in tegrat ing the resul t ing  ex -  
p r e s s i on  with r e spec t  to x between the l imi ts  ( - ~ ,  x), and r e m e m b e r i n g  that  
q ( - ~ ,  y)=  0, u 1 ( -  ~ ,  3,) =- 0, we obtain 

On the ba s i s  of solutions (2.6) and (2.9) we have 

q+_ 2--N 
2::y --  N -k 2 '  E~ + = N g  -b i - -  N--d-, E:~ + ~ 0 

In tegra t ing  (3.1) and (3.2) and applying boundary conditions (1.10), we obtain finally 

2 '+ qExdx--I I qE'~dxdy) (3.8) 
- - o o  0 - - ~  

T h e s e  exp res s ions  de t e rmine  the de fo rmed  veloci ty  and p r e s s u r e  p ro f i l e s  at x =  - ~o. It follows f rom 
(3.4) that  the a sympto t i c  flow is  c h a r a c t e r i z e d  by a nonuniform p r e s s u r e  dis t r ibut ion a c r o s s  the channel .  
Evidently,  this  i s  connected with the p r e s e n c e  of t r a n s v e r s e  e lec t r i c  fo rces  ( there is  no motion in the y 
direction).  Note that  the p r e s s u r e  at the walt  y = l  is  g r e a t e r  than at the e l e c t r o d e - e m i t t e r  y =0, since the 
t r a n s v e r s e  component  of the e lec t r i c  f o r ce  is  d i rec ted  towards  the wall  away f r o m  the e l ec t rode -emi t t e r .  
In tegra t ing (3.4) ove r  the c r o s s  sect ion of the channel and r e m e m b e r i n g  that  E x __<_ 0, we obtain 

I co  

The tota l  p r e s s u r e  at the channel outlet is thus l ess  than at the inlet. Th is  reduction in p r e s s u r e  
comes  about because  of the influence of axial  e l ec t r i c  fo rces ,  which a r e  nonzero  n e a r  the boundary of the 
s p a c e - c h a r g e  region and which a r e  d i rec ted  against  the flow. 

Note that  the  dis tr ibut ion of the e l e c t r i c a l  quanti t ies  along the en t i re  channel i s  r equ i red  in o rde r  to 
ca lcu la te  the  a sympto t i c  hydrodynamic  p a r a m e t e r s  [see Eqs.  (3 .3)and (3.4)]. 

The  re la t ionships  

u~ + = ul § (y), p+~ = p~+ (y) 

obtained f r o m  Eqs. (3.3) and (3.4) fo r  N=0.5 ,  R e = l  a re  shown in Figs.  4, 5 respec t ive ly .  The prof i le  of 
u+(y) is  cha r ac t e r i z ed  by l a rge  ve loc i ty  va lues  at the cen t ra l  e l e c t r o d e - e m i t t e r  and by s m a l l e r  va lues  at 
the upper  wall.  

In conclusion the author wishes  to thank A. B. Vatazhin for  suggest ing the p rob l em and for  his constant  
at tention throughout the work .  
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